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ABSTRACT. We explore the thesis that stochasticity in successional-disturbance systems can be an agent of 
species extinction. The analysis uses a simple model of patch dynamics for seral stages in an idealized landscape; 
each seral stage is assumed to support a specialist biota. The landscape as a whole is characterized by a mean 
patch birth rate, mean patch size, and mean lifetime for each patch type. Stochasticity takes three forms: (1) patch 
stochasticity is randomness in the birth times and sizes of individual patches, (2) landscape stochasticity is 
variation in the annual means of birth rate and size, and (3) turnover mode is whether a patch is eliminated by 
disturbance or by successional change. Analytical and numerical analyses of the model suggest that landscape 
stochasticity is the most important agent. Landscape stochasticity increases the extinction risk to species by 
increasing the risk that the habitat will fluctuate to zero, by reducing the mean abundance of species, and by 
increasing the variance in species abundance. The highest risk was found to occur in species that inhabit patches 
with short lifetimes. The results of this general model suggest an important mechanism by which climate change 
threatens biodiversity: an increase in the frequency of extreme climate events will probably cause pulses of 
disturbance during some time periods; these in turn would cause wider fluctuations in annual disturbance rates 
and thus increase the overall level of landscape stochasticity. However, the model also suggests that humans can 
manipulate landscape stochasticity to reduce risk. In particular, if managed disturbances were more evenly 
distributed in time, attrition of the regional biota might be prevented. Other work on the connection between patch 
dynamics and extinction risk assumes the absence of landscape stochasticity and thus overlooks an important 
component of risk to biodiversity.  

INTRODUCTION 

Birth-death processes can be considered to operate at a 
variety of levels of organization in biological systems 
and are tightly bound up with ideas about the 
persistence of species. The most familiar level of 
organization at which births and deaths occur is, of 
course, that of the individual organism, and the 
persistence of entire species has traditionally been 
expressed in terms of the birth rates and death rates at 
this level. Over the past few decades, it has become 
useful to broaden the focus and consider "births" and 
"deaths" at other levels, such as entire populations and 
even whole habitat patches (Levins 1969, Levin and 
Paine 1974, Hanski and Gilpin 1997). These birth-
death processes are commonly referred to as 
metapopulation dynamics and patch dynamics, 
respectively. Theoretical work on these subjects has 
tended to focus on deterministic causes of extinction, 
where a species goes extinct because its only stable 
equilibrium is at zero abundance (Levins 1969, 
Johnson 2000, Amarasekare and Possingham 2001). 
However, ecologists have also recognized that 
stochasticity in birth-death processes also causes 

extinction, i.e., that random perturbations of an 
otherwise persistent species can drive it extinct 
(MacArthur and Wilson 1967, Levin 1969, Shaffer 
1981, 1987). Lande (1993), in particular, thoroughly 
examined the link between stochasticity and extinction 
risk at the population level. Hanski (1991) sketched a 
comparable scheme for metapopulation dynamics.  

There is no such treatment for patch dynamics, despite 
the fact that patch dynamics often encapsulate the 
dynamics of populations and metapopulations, and 
despite recent interest in the topic. So far, this interest 
has focused on deterministic models of extinction 
(Gyllenberg and Hanski 1997, Johnson 2000, 
Amarasekare and Possingham 2001). Some studies 
involved techniques that allowed for stochasticity, 
such as computer simulations (Fahrig 1992) and 
interacting particle systems (Keymer et al. 2000); 
however, because the focus was elsewhere, the role of 
stochasticity was not examined.  

As we see it, there are two important limitations in the 
work to date. First, patch births in a given landscape 
are always assumed to be independent of one another, 
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Many landscapes contain multiple species at risk, a 
more complex situation. For example, west of Austin, 
Texas, is a landscape that supports two endangered 
birds: the Black-capped Vireo (Vireo atricapillus) and 
the Golden-cheeked Warbler (Dendroica chrysoparia). 
The Warbler is a specialist of old-growth juniper, 
Juniperus ashei (Engels and Sexton 1994), whereas 
the Vireo typically inhabits scrub oak thickets, 
Quercus spp. (Grzybowski et al. 1994). Most stands of 
scrub oak comprise a mid-successional stage that 
eventually transforms to juniper; ecological 
disturbances are necessary to generate new patches or 
maintain existing ones, but at a cost to patches of 
juniper. Periods in which the risks of fire or real estate 
development are high should increase the fraction of 
scrub oak and decrease that of juniper, whereas rainy 
economic recessions should do the opposite. Clearly, 
there is a trade-off between conserving the habitat of 
one bird species rather than the other. On the other 
hand, variability in patch turnover might be expected 
to affect both birds negatively, because it would 
increase the variability in the amount of both types of 
habitat. Thus, some management strategies might 
involve risk trade-offs, whereas others might increase 
(or decrease) risk across the board. It would be useful 
to have some insight into the situation. If the risks 
posed to individual species are modulated by the 
overall disturbance regime, it may be possible to 
devise schemes that protect large suites of species via 
management of the disturbance regime of the system 
as a whole.  

in clear contrast to the empirical situation in which 
climate fluctuations and contagious processes such as 
fires or floods cause patch births (and deaths) to be 
correlated in time (O'Neill et al. 1986, Busing and 
White 1993, Turner et al. 1993, Clark 1993, 1996, 
Malamud et al. 1998). Are conclusions about species 
extinction sensitive to this assumption?  

Second, the body of work contains heterogenous 
assumptions about the statistical distribution of death 
times for patches. Sometimes the assumptions 
resemble situations in which patch deaths are caused 
by succession (Fahrig 1992); other times they 
resemble disturbance (Keymer et al. 2000, 
Amarasekare and Possingham 2001) or a mixture of 
the two (Brachet et al. 1999). Are conclusions about 
extinction sensitive to these assumptions (see also 
Johnson 2000)?  

In this paper, we attempt to address these issues. We 
treat habitat patches as having discrete births and 
deaths of their own that arise from the interplay of 
disturbance and succession. We also examine what 
would happen if these births and deaths had various 
probability distributions that corresponded to different 
mechanisms of landscape change.  

To see the potential importance of stochasticity, 
consider the case of the European grasshopper 
Bryodema tuberculata. In central Europe, this 
grasshopper inhabits riparian gravel bars (Stelter et al. 
1997). These habitat patches are periodically 
eliminated by willow invasion and by catastrophic 
floods that destroy existing patches but also create new 
ones elsewhere along the river. An important feature 
of the system is that the turnover of patches is not 
continuous. Instead, there is an average of three to 10 
floods per century, and their sporadic nature tends to 
create even-aged "cohorts" of gravel bars after each 
flood (Stelter et al. 1997). As a result, the grasshopper 
is exposed to two distinct risks: first, the river may go 
too long without a flood, so that all suitable habitat is 
lost to willow invasion, and, second, the river may 
randomly flood several times in quick succession, 
eliminating the grasshopper populations in the old 
patches before they can colonize new ones. Either 
way, the potential exists for the grasshopper to be 
driven extinct regionally by its patch dynamics. It 
seems plausible that the risk should depend not just on 
the number of floods, but also on their distribution in 
time. If so, water management practices might be 
adopted to modulate the distribution of floods and 
reduce risk.  

For our purposes here, we abstract to a general 
scenario of n seral stages that each contain a unique 
suite of species. The ecological system is idealized as 
a small number of plant species whose interactions 
drive succession, plus a larger number of focal species 
that must passively track this shifting mosaic of patch 
types (Fig. 1). We examine the persistence of the focal 
species within the context of the dynamics of the patch 
mosaic. For our set of focal species, we consider as 
wide a range of life histories as is practical given the 
simplicity of the model. This array includes species 
with rapid population growth, as occurs in many 
insects, and slow population growth, as occurs in 
grizzly bears. It includes species with generation times 
that are short relative to the turnover of their habitat, as 
might occur in a woodland butterfly or an understory 
plant with an annual life cycle, as well as those with 
generation times that are long relative to their habitat, 
as might occur in the pioneer species that invade a site 
following a disturbance. Finally, we examine species 
with high colonization abilities, such as invasive pests, 
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and low colonization abilities, such as many epiphytic 
lichens or other species with low mobility. We ask two 
general questions. First, how do the dynamics of the 
patch system affect the extinction risk of a particular 
species in a particular habitat type? Second, are there 
risks that cut across all species in all habitat patches? 

 

Fig. 1. A diagram of the succession concept assumed by the 
model. Successional patches transform into the next stage 
after a certain number of years. At the terminal stage, the 
patch is destroyed by disturbance, resetting it to the initial 
stage. A landscape consists of a population of such patches, 
which act as a shifting mosaic.  

 
 

METHODS 

To focus on stochasticity in the patch system, we 
assumed that birth-death processes were deterministic 
when operating at the level of populations or 
metapopulations.  

Deterministic model 

A habitat patch is assumed to be a geographic area that 
intersects with the Hutchinsonian niche, i.e., the set of 

conditions that permits positive population growth 
(Hutchinson 1958), for a particular species at some 
characteristic time during succession. A given patch 
has two dimensions: a lifetime and a size. We measure 
size in terms of organisms, i.e., as carrying capacity 
(Fahrig 1992, Keymer et al. 2000). With the 
appropriate conversion, size can be interpreted as 
patch area or even as length for linear habitats such as 
rivers. Patch lifetime is framed in terms of the 
generation time of the inhabiting species. A patch's 
lifetime is the number of generations from its birth to 
the time that it is destroyed by disturbance or by 
successional change, i.e., the time when it becomes 
unsuitable as habitat. For clarity, we will refer to this 
time unit as "years" rather than "generations," with the 
understanding that the model can be mentally rescaled 
without loss of generality.  

Under these assumptions, the dynamics of the system 
can be described by the equation  

dM/dt = B - M/S, (1) 

in which M is the number of patches on the landscape 
(Levin and Paine 1974, Paine and Levin 1981). The 
parameters B and S are the mean birth rate and the 
mean lifetime of the patches, respectively. If the mean 
patch size is A, then Eq. 1 becomes  

dH/dt = AB - H/S, (2) 

where H = MA. H represents the total carrying 
capacity of all the patches in the landscape. In a 
stationary landscape, A, B, and S are constants, and 
over time the patch system converges to a stable 
equilibrium, H*, that is equal to BSA. If the species 
can move freely from "disappearing" patches to 
"newly appearing" patches with no mortality cost (a 
"patchy population" sensu Harrison 1991), then H* 
represents the landscape's carrying capacity. This 
means that H* can serve as a common currency for 
comparing landscapes with different patch dynamics. 
For example, if one landscape had double the patch 
size but half the patch birth rate of another landscape, 
the two would have identical H* values.  

Stochasticity 

Next we add stochasticity to the model, in which the 
births and deaths of patches occur randomly and cause 
the total amount of habitat to fluctuate. In this case, H* 
represents mean capacity rather than equilibrium 
capacity. We represent randomness via three 

 
 

http://www.consecol.org/vol6/iss2/art2


Conservation Ecology 6(2): 2. 
http://www.consecol.org/vol6/iss2/art2 

 

categories: (1) patch stochasticity is randomness in the 
birth times and sizes of individual patches, (2) 
landscape stochasticity is variation in the annual 
means of birth rate and size, and (3) the turnover 
model is the mechanism by which patches are 
eliminated. The first two categories are parallels of 
demographic and environmental stochasticity, which 
are commonly used to describe the demography of 
individual organisms (Shaffer 1981, 1987, Lande 
1993, Foley 1997).  

Patch stochasticity 

Assume a landscape in which patch births are discrete 
events and patch sizes are integers (i.e., can contain 
only integer numbers of organisms). If patch births are 
independent of one another, patch births per year are 
Poisson distributed with mean B. Likewise, if the 
reproductive sites or territories of a patch are 
independently generated by the event that gave rise to 
the patch, then patch sizes are Poisson distributed with 
mean A. In this construction, patches with size zero are 
possible; they represent patches that possess the 
characteristics of habitat but are too small to support 
even a single organism. The probabilities of zero births 
and zero size are Pr[bi = 0] = e-B and Pr[ai,j = 0] = e-A, 
respectively.  

Patch stochasticity is a factor in the models of Keymer 
et al. (2000) and Fahrig (1992) because they both used 
discrete-space models. However, neither paper focused 
on the consequences of patch stochasticity; in fact, 
Fahrig used an algorithm to dampen it.  

Landscape stochasticity 

Landscape stochasticity is a lack of independence 
among birth events or patch sizes that causes their 
distributions to depart from the Poisson. Ultimately, 
the lack of independence arises from disturbance 
processes that tend to fluctuate from year to year. Most 
disturbances, e.g., hurricanes, fires, world wars, tend 
to be aggregated into certain times and places and are 
"clumped" relative to the Poisson distribution. These 
can be represented mathematically by the negative-
binomial distribution (Southwood 1966, Hilborn and 
Mangel 1997, Young and Young 1998).  

The negative-binomial distribution can be specified by 
a mean and a dispersion parameter u. Following 
Young and Young (1998), we adopt a 
parameterization in which the negative-binomial 
converges onto the Poisson as u goes to zero. Larger 

values of u imply higher levels of year-to-year 
variability. The probability of drawing zeros from this 
distribution is  

 (3) 

We examine three levels of aggregation: (1) reference 
(patch stochasticity only), (2) low variability 
(dispersion parameter uA or uB equal to 1), and (3) high 
variability (uA or uB equal to 10). To get an idea of the 
meaning of each level, consider a system in which the 
mean birth rate is 100 patches per year. What is the 
probability of a year with zero patch births? Under 
reference variability, the probability is extraordinarily 
small (3 x 10-44). Under low variability, the probability 
rises to 0.01, and the shape of the distribution is 
similar to some of the power laws that describe self-
organized critical behavior (e.g., Malamud et al. 
1998). Under high variability, the probability is 0.50, 
and all the patch births occur in only half the years.  

Turnover mode 

Finally, we define distributions for patch lifetime, 
representing succession and disturbance (Fig. 1). The 
succession mode assumes an orderly set of changes in 
the plant community that eventually transforms the 
patch into nonhabitat. Under this idealization, all 
patches have identical lifetimes, subject to the 
constraint that they be integers. For example, if mean 
lifetime is 10.5 yr, in our model actual lifetimes of 10 
yr and 11 yr each occur with probability 0.50.  

In contrast, the disturbance mode assumes patches to 
have a constant risk of destruction. This implies a 
geometric distribution of lifetimes; for example, if a 
risk of 10% is applied to a cohort of 1000 patches, 
then 100 patches disappear in year 1, leaving 900, and 
90 disappear in year 2, leaving 810, and so on. In this 
mode, most patches have lifetimes shorter than the 
mean, but a few have lifetimes much longer. The mean 
itself is the reciprocal of the rate of disappearance. 
These assumptions relate to previous work in the 
following way. Fahrig (1992) assumed a fixed patch 
lifetime corresponding to our succession mode. 
Keymer et al. (2000) and Amarasekare and 
Possingham (2001) assumed constant rates that 
correspond to our disturbance mode but are modeled 
in continuous time rather than discrete time. Brachet et 
al. (1999) assumed a mixed model: maximum lifetime 
was fixed, as in our succession mode, but patches had 
a constant risk of being destroyed sooner, as in our 
disturbance mode.  
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Risk factors 

We consider three indicators of extinction risk: (1) 
decreases in the mean abundance of species, (2) 
increases in the variance of abundance, and (3) 
increases in the probability that habitat will fluctuate 
to zero, leaving a gap in the continuity of habitat. For 
convenience, we will call these the "mean," 
"variance," and "gap" effects, respectively. These 
effects were estimated for various levels of landscape 

stochasticity and expressed in proportion to their levels 
in a reference landscape. The reference landscape 
lacked landscape stochasticity but was otherwise 
identical to the focal landscape (see Table 1). For 
example, a mean effect of 0.4 indicates that the mean 
abundance of a species in the focal landscape was 
reduced by 40% compared to its reference. A variance 
effect of 2 indicates that the standard deviation of the 
species abundance was doubled relative to its 
reference.  

 

Table 1. Indicators of extinction risk. Effect size is measured in relation to a reference landscape lacking landscape 
stochasticity.  

Name         Description                  Effect size          

Gap effect Probability of a gap in the  
continuity of habitat 

The multiplier of patch birth rate necessary  
to counteract the increased risk of a gap          

            

Mean effect Reduction in a species'  
mean abundance 

The proportion by which  
the mean decreases          

            

Variance effect Increase in a species' standard  
deviation of abundance 

The factor by which the standard  
deviation increases          

For reasons that will become apparent in the results, 
we expressed the gap effect as the increase in patch 
birth rate that was required to keep the risk of a gap 
below 0.05. Again, this is expressed in relation to a 
comparable reference landscape,  

Thus, a gap effect of 10 indicates that the patch birth 
rate would have to be increased 10-fold to compensate 
for the risk arising from landscape stochasticity.  

Population models 

The gap effect could be determined analytically; the 
derivations of the various models are in Appendix 1. 
To estimate the mean and variance effects, it was 
necessary to perform numerical simulations of a 
population model that was embedded within the patch 
model (please refer to the methods in Appendix 1). 
Given the many possible population models, we 
examined two simple ones that are complementary to 
one another: a patchy population and a 
metapopulation. In the patchy population, the 

organisms disperse freely between habitat patches 
(Harrison 1991), and the population is assumed to 
have finite growth each generation. The population 
grows according to the equation  

where is the finite rate of increase and Ht+1 is the 
amount of habitat in year t + 1. In the metapopulation 
model, dispersal between patches is restricted, but 

population growth is effectively infinite: a 
subpopulation fills a patch to capacity immediately 
after colonization (see Levins 1969, Hanski 1994). 
Under these assumptions, the probability of a patch 
being occupied is  

 
(4) 

 
(5) 

 
(6) 

where c is the colonization probability (the probability 
that an organism in patch j will send out propagules 
that successfully colonize patch i the following year 
(see Appendix 1). Expected total abundance of the 
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Fig. 2. The probability that a habitat will remain above zero 
in a random year. Shown is the case for successional patches 
with a mean lifetime of 3.1 yr and no landscape stochasticity 
(uA = uB = 0). The probability has a threshold whose 
position is quantified via the "critical threshold," which is 
equal to the 0.95 contour on the probability surface. Low 
risk occurs above the contour, high risk below.  

species in year t is pi,tai,t. The model assumes each 
subpopulation to persist until its patch disappears. For 
both models, we used simulations to examine a low, 
medium, and high value of the relevant demographic 
rate (  = 1.01, 1.25, and 2.0, and c = 0.00001, 0.001, 
and 0.1).  

In toto, we considered an array of species with widely 
varying characteristics, namely, association with long-
lasting patches vs. ephemeral patches (relative to 
species' generation time), large vs. small patches 
(relative to species' home-range size or territory size), 
patches destroyed by succession vs. disturbance, 
species with high vs. low population growth (a 
doubling per generation vs. a 1% increase per 
generation), and high vs. low colonization ability 
(covering four orders of magnitude, which should 
suffice for a parameter whose empirical range of 
values is still poorly known).  

RESULTS  

Habitat discontinuities under patch 
stochasticity Fig. 3. The position of critical thresholds in four kinds of 

patchworks. Patch lifetimes are equal to 3.1, 10, 31, and 100 
yr, respectively; model assumptions are succession and zero 
landscape stochasticity. The shape of the critical threshold is 
similar among cases, but its position on the axes varies 
according to patch lifetime. For a system at point a, mean 
capacity (H*) can be reduced by decreasing either the patch 
size (horizontal arrow) or the patch birth rate (vertical 
arrow). Both options carry equal risk in that they are 
equidistant from the critical threshold. However, for a 
system at point b, it is always riskier to reduce the patch 
birth rate.  

Under patch stochasticity, there was a sharp threshold 
in the probability that the amount of habitat would be 
greater than zero in a random year. At high patch birth 
rate or size, this probability was very close to 1. As 
either parameter was reduced, the probability 
eventually encountered a threshold at which it quickly 
dropped to nearly zero, indicating that extirpation of 
the species became very likely (see Fig. 2 for an 
example). For convenience, we assess the position of 
this drop via the "critical" threshold, defined as the 
contour at which the probability of habitat is 0.95 (Fig. 
2). The critical threshold is described by the equation  

 

(7) 

for both the succession and disturbance modes. The 
derivation of Eq. 7 is described in Appendix 1. 
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Figure 3 illustrates the shape of the threshold in 
parameter space. Observe that, in the left-hand part of 
the figure where patches are small, this threshold is 
approximated by a diagonal line with slope -1 (proven 
analytically in Appendix 1). In contrast, on the right-
hand side of the figure where mean patch sizes are 
larger (> 2), the threshold is independent of patch size 
(also shown analytically in Appendix 1). Figure 3 also 
illustrates the fact that the critical threshold depends 
on patch lifetime. Its shape is preserved as lifetime 
becomes longer, but its position shifts down the B axis 
so that systems with longer patch lifetimes can tolerate 
greater reductions in patch birth rate. In large-patch 
systems, the relationship is simple: the species stays 
above the threshold if B > ln(20)/S. 

 

Fig. 4. The effect of landscape stochasticity on the position 
of the threshold. The reference curve is the critical threshold 
shown in Fig. 2 (successional patches with lifetime = 3.1 
yr). The middle curve is the critical threshold for similar 
landscapes differing only in that they have high variability 
in patch sizes (uA = 10). The upper curve is the critical 
threshold for landscapes that have high variability in patch 
births per year (uB = 10). The lengths of arrows a and b are 
examples of gap effects for particular scenarios.  

 
 

Gap effects and landscape stochasticity 

From the derivations in Appendix 1, it was possible to 
calculate exact values for the gap effects at various 
levels of landscape stochasticity, although the 
equations involved were sometimes messy. The largest 
gap effect occurred in successional patches with short 
lifetimes (< 5 yr), and the cause was high variability in 
patch birth rate (Fig. 4). For example, in patches with a 
mean lifetime of 3 yr, the threshold B was 1.00 patches 

per year in the reference landscape and 2172 patches 
per year in the landscape with high variability. This 
implies a gap effect of 2172, more than three orders of 
magnitude! (See arrow b in Fig. 4.) 

 

Fig. 5. Gap effects in a variety of large-patch systems, in 
which the size of the effect is measured in relation to a 
reference landscape that lacks landscape stochasticity. Low 
variability is uA = 1 (for variability in patch size) or uB = 1 
(for variability in patch births). Medium variability is uA = 5 
or uB = 5, and high variability is uA = 10 or uB = 10 ( A = 10; 
results were similar for larger A except that the effects of uA 
become smaller).  

 
 

Effect sizes of other parameter combinations were 
smaller but nonetheless notable. For the case of large-
patch systems (A > 2), the results are as follows (see 
Fig. 5):  

1. Gap effects were consistently greater than 1.0, 
implying that landscape stochasticity generally 
increased the risk of extinction. The 
magnitude of the increase could be quite small 
or large.  
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Mean and variance effects 2. Birth rate fluctuations caused large gap 
effects, especially in the most ephemeral patch 
types. Long-lived patches (S = 100 yr) were 
much less susceptible to landscape 
stochasticity, and effect size was always less 
than 1.17, meaning that patch birth rate would 
have to be increased only 17% to control risk 
even under very high fluctuations (see Fig. 5).  

The results from the population simulations are as 
follows. First, we examined the effect of simple 
changes in patch birth rate. Figure 6 shows profiles for 
a set of landscapes as their patch birth rate was 
changed; this pattern is typical of the various 
parameter combinations we examined. The vertical 
axis of the graph shows habitat occupancy, which is 
the mean of population size divided by amount of 
habitat. Occupancy tended to be depressed near the 
critical threshold, but it increased with higher patch 
birth rates. Thus, near the threshold, an increase in 
patch birth rate not only raised the mean amount of 
habitat (H*) but also tended to increase the fraction of 
the habitat that was occupied by the species. 

3. Birth rate fluctuations had consistently larger 
effects in succession mode than in disturbance 
mode by factors ranging from 1.004 to more 
than 30 depending on lifetime (compare parts 
A and B of Fig. 5).  

4. When patch size rather than birth rate was 
variable, gap effects were independent of 
lifetime and differed little between the 
succession and disturbance models. They were 
relatively small, but nevertheless dominated in 
long-lived patches (S = 100 yr). Figure 5 
shows the case for A = 10; the effects become 
smaller with larger patches.  

 

Fig. 7. The mean and variance effects when patch sizes 
were variable: uA = 1 (low), and uA = 10 (high). Larger 
effects imply higher risks of species extinction. The 
horizontal curves illustrate effects for species with medium 
demographic rates (  = 1.25 for patchy populations, and c 
= 0.001 for metapopulations). The vertical lines illustrate 
the range of effects observed under high and low 
demographic rates (  = 1.01–2.0, and c = 0.1–0.00001). 
For the mean effect, effect size was always close to zero, 
and there was virtually no spread among the different 
demographic rates. For the variance effect, effect size was 
only negligible in species with low demographic rates (  = 
1.01, c = 0.00001; not labeled in figure), or in patches with 
long lifetimes and disturbance as the mechanism of 
turnover.  

 

Fig. 6. A profile of habitat occupancy in a typical patchy 
population (  = 1.1, patch size A = 10). Shown is a 
disturbance model with short patch lifetimes (3.1 yr). 
Habitat occupancy is the mean proportion of habitat 
occupied by the species over time.  

 

 

 

Thus, in large-patch systems a change in patch size 
(mean or dispersion) generally had a relatively small 
effect, but a change in patch birth rate could have a 
large effect. Reducing the mean or increasing the 
dispersion could push the system over the critical 
threshold of risk. 

 

Next we examined risk in systems that were well 
above their critical thresholds by simulating 
landscapes with B = 10,000 patch births per year and 
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Variability in patch birth rate calculating the mean and variance effects for species 
with high, medium, and low demographic rates, 
respectively (Figs. 7 and 8). Several patterns became 
evident. 

Mean effects could be quite large in the case of 
variable birth rate (Fig. 8). Low variability reduced 
mean abundance by 0 to 70%, depending on patch 
lifetime and species demographic rates. High 
variability reduced it by 40 to100%. The largest effects 
tended to occur in the patches with the shortest 
lifetimes.  

 

Fig. 8. The mean and variance effects when patch birth rate 
is variable: uB = 1 (low), and uB = 10 (high). Larger effects 
imply higher risks of species extinction. The horizontal 
curves illustrate effects for species with medium 
demographic rates (  = 1.25 for patchy populations and c = 
0.001 for metapopulations). The vertical lines illustrate the 
range of effects observed under high and low demographic 
rates (  = 1.01–2.0, and c = 0.1–0.00001). For the mean 
effect, the spread among demographic rates within a patch 
type was very small when patches were long-lived. When 
patches were short-lived, the spread was wider, as can be 
observed in the figure. In these cases, the largest effects 
were in the species with the lowest demographic rates (  = 
1.01, and c = 0.00001; not labeled in figure). For the 
variance effect the situation was reversed: when spread 
occurred, the smallest effect was in the species with low 
demographic rates (not labeled in figure). This is partly an 
artifact of the simulation method (see Discussion).  

Variance effects were also quite strong. Low 
variability in patch birth rate increased the standard 
deviation of species abundance by up to 30-fold; high 
variability increased it by up to 60-fold (Fig. 8). Once 
again, in successional mode the variance effects were 
relatively insensitive to patch lifetime, whereas in 
disturbance mode they were smaller in the longer-lived 
patches.  

It can be seen in Fig. 7 and especially in Fig. 8 that, 
within a given patch category, there was some spread 
that occurred in the mean and variance effects, as 
indicated by the symbols connected by vertical lines. 
This spread is the range for species with high and low 
demographic rates, respectively (see the figure legends 
for details). It could be quite pronounced when patch 
birth rates were variable (Fig. 8). For the mean effect, 
the largest effects occurred in the species with the 
smallest demographic rates (  = 1.01, c = 0.00001), 
corresponding to species with slow growth or poor 
colonization ability. Conversely, the smallest effects 
were in species with large demographic rates (  = 2, c 
= 0.1), i.e., those with rapid growth or good 
colonization ability. These results are intuitive. Less 
intuitive is the variance effect, in which the situation 
was the opposite: species with small demographic 
rates had the smallest effects. Sometimes their effects 
were less than one, indicating lower variability than in 
the reference system.  

 
 

DISCUSSION 

Variability in patch size The critical threshold had several interesting properties 
related to patch stochasticity. In the small-patch 
portion of parameter space the threshold had a slope of 
-1 (left side of Fig. 3). This implies that reducing the 
patch size carries the same risk as reducing the patch 
birth rate. For example, cutting the mean patch size in 
half has the same risk as cutting the patch birth rate in 
half. This equivalence can be deduced geometrically 
from Fig. 3; any small-patch system is equally as far to 
the right of the threshold as it is above the threshold 
(e.g., point a in Fig. 3).  

Variability in size generally had no effect on the mean 
abundance of species in the entire range of 
demographic rates examined (Fig. 7). Variance effects 
were larger. Low variability increased the standard 
deviation of species abundances by up to 30%. High 
variability increased it by up to 300% (Fig. 7). In 
succession models, variance effects were independent 
of patch lifetime. In disturbance models, they were 
inversely related to patch lifetime.  
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In contrast, in large-patch systems the risk is 
independent of patch size (right side of Fig. 3). 
Consider a hypothetical scenario in which land 
managers must reduce the mean capacity of a 
landscape (H*), but do not want to extirpate any 
species in the process. In large-patch systems, 
reducing the patch birth rate is always riskier than 
reducing the patch size, because the former always 
encounters the critical threshold sooner (compare the 
horizontal and vertical arrows at point b in Fig. 3).  

One of the most important predictions suggested by 
these results is that landscape stochasticity can be a 
strong force for species attrition. These risks were 
found to be the highest in the most ephemeral habitats, 
a view consistent with certain empirical observations 
(Menges 1990, Thomas and Morris 1994). The model 
predicts that variable birth rates tend to have larger 
effects than variable patch sizes. Fluctuating birth rates 
added to risk by raising the probability of habitat 
fluctuating to zero, by tending to reduce the mean 
abundance of species, and by increasing the magnitude 
of abundance fluctuations. These conclusions cut 
across most of the species types.  

There was, however, one set of circumstances in 
which fluctuating patch birth rates seemed to be 
beneficial: variance effects of less than 1 were 
observed in species with low demographic rates, i.e., 
poor colonization ability or slow population growth. A 
variance effect of less than 1 meant that the species 
fluctuated less than in the reference landscape, which 
is counterintuitive. Inspection of the individual model 
runs indicated that these species were buffered against 
habitat fluctuations, but only on the upside; they failed 
to grow quickly when the amount of habitat suddenly 
increased in a highly variable situation. In other words, 
in a boom-and-bust landscape they were hurt by the 
bust but not helped by the boom, and thus they were 
less variable than species that could rapidly exploit the 
boom because of high demographic rates. In short, for 
species with low resiliency and thus low variability, 
landscape stochasticity was not at all beneficial.  

Implications 

To explore some implications of our results, think of 
patch birth rate as a linear function of landscape size, 
B = kL, where k is patch births per unit area and L is 
the size of the entire landscape. If k is everywhere the 
same, an increase in L reduces risk across all species. 
This prediction is consistent with island biogeography 
theory, which predicts that larger islands will have 

lower extinction rates and higher species diversity 
(MacArthur and Wilson 1967). Because habitat 
diversity is only one mechanism among the many that 
have been proposed to account for this pattern 
(MacArthur and Wilson 1967, Pickett and Thompson 
1978, Quinn and Harrison 1988, Holt 1992, Foley 
1997), it has tended to receive little attention. 
However, Picket and Thompson (1978) described its 
relevance early on, noting that habitat diversity is 
maintained dynamically by disturbance and 
succession. To avoid extinctions, they suggested that 
an island must have the "minimum dynamic area," i.e., 
the smallest area in which the disturbance regime is 
capable of maintaining all habitats at all times. Our 
theoretical analysis builds on their concept by 
predicting that the minimum dynamic area should 
depend on landscape stochasticity (Fig. 9). Applying 
this insight to conservation problems, we suggest that 
species attrition might be prevented by manipulating 
the dynamics of patch births and/or deaths.  

 

Fig. 9. The concept of landscape stochasticity in the context 
of island biogeography theory. The island-wide "gap" effect 
for a species shows an approximate power relationship with 
island size. The slope of the relationship is related to 
variability in the patch birth rate. The three dots mark the 
location of critical thresholds on each curve, indicating the 
points at which it becomes highly unlikely that the species 
can persist on the island for even a short time.  

 
 

In many areas, land managers are already 
manipulating patch dynamics ad hoc. For example, the 
Coast Range Mountains in the state of Oregon 
comprise 2 x 106 ha whose ownership is distributed 
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among federal and state agencies, large corporate 
timber companies, and small private holdings. 
Recently, several old-growth preserves were 
established on the federal lands to protect old-growth 
specialists, including the endangered owl Strix caurina 
occidentalis (U.S. Forest Service and U.S. Department 
of the Interior 1994). The preserves were established 
because the amount of old-growth had dwindled to 5% 
of the region's area. To place this state of affairs in 
context, Wimberly et al. (2000) reconstructed the 
province's prehistoric fire regime. Using charcoal 
records and a simulation model, they inferred that 
wildfire originally caused a shifting mosaic of patch 
types in which the proportion of old-growth forest 
varied from 25 to 70% of the landscape. At a smaller 
scale equivalent to the size of today's old-growth 
reserves, the proportion varied from 0 to 100%. This 
suggests that today's reserves are smaller than the 
region's minimum dynamic area. Consequently, active 
fire suppression is necessary to prevent extirpation of 
old-growth specialists (U.S. Forest Service and U.S. 
Department of the Interior 1994).  

We suggest that the Coast Range situation has arisen 
because of the territorial behavior of human groups: 
property lines now delineate disturbance regimes, 
which are dominated by rotational timber harvest on 
private lands, structure-based management on state 
lands, and fire suppression on federal lands (Spies et 
al., in press). Each of these regimes represents a 
different compromise between conflicting 
environmental and economic world views. In the 
context of our model, this is a shift from a system in 
which patch birth rate had not only a large mean but 
also a large variance (i.e., large areas of old growth but 
also high landscape stochasticity due to catastrophic 
fires) to a system in which its mean is small and its 
variance is also small (i.e., the potential for old growth 
exists only on federal and perhaps state lands and 
mean fire size is vastly reduced). The prehistoric and 
contemporary situations are two points along a 
continuum of schemes that could be envisioned to 
trade off the risks imposed by the mean amount of 
habitat with the risks imposed by landscape 
stochasticity. For those who might evaluate the many 
possible schemes, our results lead us to offer the 
following speculations for consideration:  

1. Structure-based management is often used to 
"accelerate" succession by actively managing 
for, say, old-growth characteristics in forest 
stands that are relatively young. This shortens 
the patch lifetimes of intervening seral stages 

or eliminates the intervening stages entirely 
(i.e., reduces their patch birth rate). Our model 
predicts that these effects can potentially 
increase the risk to species specialized on 
those seral stages. Thus, there are likely to be 
inherent trade-offs between specialists of 
different seral stages. Increasing the mean 
amount of habitat for one group probably 
decreases the mean for another.  

2. However, the extinction risk from reducing 
patch lifetime or birth rate depends on how 
close the species already is to its extinction 
threshold. If it is far away from the threshold, 
the change in risk may be infinitesimally 
small. Thus, choosing a scheme requires some 
understanding of the demography of 
individual species. This might be gained by 
studying either the demography of a 
representative group of species scattered 
among various patch types, or by reviewing 
the long-term history of disturbance to infer 
what their demography must have been to 
persist in the system up to the present day.  

3. In contrast to the trade-offs described above, 
landscape stochasticity had a consistent effect 
across all types of species in all patch types. It 
always increased risk, although the increase 
ranged from negligible to catastrophic (Figs. 
5, 7, and 8). This suggests that increasing the 
level of landscape stochasticity relative to 
prehistoric levels would entail risks to many 
species, whereas decreasing it would probably 
be risk-free. Because the effect cuts across all 
species in a consistent way, it seems 
reasonable to expect that a conservation plan 
that focuses on landscape stochasticity would 
tend to protect assemblages of poorly known 
species with relatively high efficiency.  

It also seems possible that the concept of landscape 
stochasticity is relevant to ecosystem management in 
an era of global climate change. The world's 
climatologists have reached consensus that human 
activities are causing rapid global warming 
(Intergovernmental Panel on Climate Change 2000, 
2001), and it is widely believed that the increased 
thermal energy in the climate system will produce 
more droughts, floods, and wildfires (Easterling et al. 
2000). Such a turn of events will probably increase the 
level of landscape stochasticity in many areas, even as 
human activities fragment the remaining "natural" 
areas.  
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Against this troubling backdrop, it is interesting to 
contemplate the conservation opportunities in working 
landscapes. For example, recent advances in applied 
forestry emphasize ecological values, including the 
value of biodiversity (Kohm and Franklin 1997). 
Moreover, the concept of historical variability is 
increasingly used to frame environmental issues in 
working landscapes and river systems (Attiwill 1994, 
Swanson et al. 1994, Frissell and Bayles 1996, Aplet 
and Keeton 1999, Boughton et al. 1999, Everett and 
Lehmkuhl 1999). Resource managers have begun 
using historical data to develop new management 
practices that partially mimic the original disturbance 
regimes (Cissel et al. 1999, Landres et al. 1999). These 
developments suggest that historic disturbance regimes 
can be the basis for managing "populations" of patch 
types at a truly regional scale (Baker 1992, Benda et 
al. 1995).  

Unfortunately the changing climate will ultimately 
push many systems outside their historic ranges, and 
existing concepts are heuristic and offer little guidance 
in managing the novel situations of the coming 
century. Our model suggests the possibility of 
managing patch systems according to principles of 
population biology as applied to patches rather than 
organisms. Here we have examined one of the simplest 
possible models, but future work might profitably 
focus on more complex models involving concepts of 

population regulation. This is often defined as 
fluctuations within limits, in which the lower limit is 
greater than zero (Mountford 1988, Murdoch and 
Walde 1989, Hanski 1990). It is interesting that the 
hierarchy theory of ecosystems has a parallel concept 
of "incorporation" that describes the regulation of 
ecosystem attributes (O'Neill et al. 1986). Because the 
amount of habitat is such an attribute, it may be 
worthwhile to examine how incorporation concepts 
can be applied to biodiversity management. By doing 
so, ecological systems may be able to depart from their 
historic regime in ways that minimize risk for as much 
of the biota as possible, provided that economic and 
ecological values are adequately integrated into the 
working parts of the landscape.  

Responses to this article can be read online at: 
http://www.consecol.org/vol6/iss2/art2/responses/index.html. 
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APPENDIX 1.  
DERIVATION OF EQUATIONS AND NUMERICAL METHODS 

Derivation of the gap effect 

Assume that the landscape is such that, in year i, the number of patch births bi is either Poisson distributed with 
mean B, or negative-binomially distributed with mean B and dispersion parameter uB. Likewise, the size of each 
patch ai,j ( j = 1 to bi) is either Poisson distributed with mean A, or negative-binomially distributed with mean A 
and dispersion parameter uA. The Poisson distribution is a model of patch stochasticity; the negative binomial is a 
model of patch + landscape stochasticity.  

In the negative binomial distribution, the mean and dispersion parameters ( X, u) are related to the conventional 
parameters p and m as  

p = (1 + uX)-1, (A.1) 
and  

m = u-1. (A.2) 
According to the relevant probability distribution functions (PDFs), the probability of zero patch births in year i 
under the Poisson distribution is  
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Pr[bi = 0] = e-B (A.3) 
or the negative-binomial distribution  

pm = (1 + uB)-1/u .  (A.4) 
Notice that Eq. A.3 is equal to the limit of Eq. A.4 as u approaches zero. Analogous equations describe the 
probability of patches with size zero.  

Succession model with lifetime S 

Case 1: ai,j, bi are Poisson distributed with means A and B. Let H = H(t) = a random variable describing total 
habitat present at time t.  

 
(A.5) 

where Hi is the amount of habitat added in year i (S an integer). Let I be the probability that there is no habitat at 
time t, that is,  

I = Pr[H = 0]                                          
= Pr[Hi = 0 for i = t-S, t-S+1, ...t]           
= Pr[Ht-S = 0] Pr[Ht-S+1 = 0] ...Pr[Ht = 0]  
= (Pr[Hi= 0])S,                                        

(A.6) 

in which distributions are independent of time.  

The probability for each individual year is  

 

(A.7) 

The probability for all years is therefore  

 (A.8) 

If S is not an integer, a more complex expression can be derived. Let z be the integer part of S, and q be the 
fractional part. Then,  
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(A.9) 

The term in square brackets is a first-order Taylor approximation,  

 (A.10) 

where x = eB(e-A-1), which means that Eq. A.8 can be used as an approximation for Eq. A.10.  

It is also possible to derive an expression for B as a function of A, S, and I. This is useful for generating 
probability contours, such as the critical thresholds in Figs. 2 and 3. Let I be the value of the contour, and using 
Eq. A.8, solve for B to get  

 
(A.11) 

For small A, the expression e-A can be approximated by a Taylor series, 1-A, and B at the threshold is  

 
(A.12) 

On log scales for A and B, this relationship is  

 
(A.13) 

which is a straight line with slope -1.  

For large A, the expression e-A is approximately equal to 0, and the threshold is  

 
(A.14) 

 

At the critical threshold, I = 0.05, and the expression is ln(20)/ S.  

Case 2: ai,j is Poisson distributed, and bi is negative-binomially distributed.  

Start with a negative binomial having the conventional parameters m and p. The probability of zero habitat in an 
individual year is  
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(A.15) 

Let p* = 1 - (1 - p)e-A. Multiply each term of the summation by ( p*)m/(p*)m and factor out the denominator, to 
obtain  

 

(A.16) 

The summation now contains a negative-binomial PDF with parameters m and p*, and therefore it sums to 1. The 
expression simplifies to  

Pr[Hi = 0] = pm [1 - (1 - p)e-A]-m. (A.17) 
Considering all years combined gives  

Pr[ H = 0] = pSm [1 - (1 - p)e-A]-Sm, (A.18) 
and substituting B and u for m and p produces  

 

(A.19) 

This simplifies further to  
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(A.20) 

To obtain values for a given contour of I, solve for B to obtain  

 
(A.21) 

which shows the B necessary to attain a given threshold I. As in Case 1 above, it is possible to obtain simpler 
approximations when A is large or small:  

 

(A.22) 

 

Case 3: ai,j is negative-binomially distributed, and bi is Poisson distributed:  

 

(A.23) 

Considering all years gives I = exp([ pm -1]BS), which, after substituting in A and u, yields  
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I = exp([(1+ Au)-1/u -1]BS). (A.24) 
To get a function for a given contour of I, solve for B and obtain  

 
(A.25) 

Case 4: a i,j and bi are negative-binomially distributed.  

The PDF for ai,j has parameters p1 and m1 and for bi has parameters p2 and m2:  

 

(A.26) 

The summation is a PDF that sums to 1. And for all years considered together,  

 

(A.27) 

Disturbance model with patch lifetime S 

As before, let H(t) be a random variable for total habitat area at time t. The disturbance model assumes that 
patches have a constant probability of being eliminated, so let Pr[existing patch dies in a given year] = . The 
amount of habitat in year t is  

 
(A.28) 

where Hi,j(t) is the amount of habitat in the jth patch born in the ith year, that is still present in year t. For habitat in 
a given year,  
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(A.29) 

Then the probability of zero habitat in year t is  

 

(A.30) 

and the contribution from each year i is  

 

(A.31) 

The probability for each patch in each year is  

 (A.32) 

This final equation states that there are two ways in which a patch can have size zero when it is t - i years old: (1) 
when it is born, the random variable that determines its size is 0, or (2) it is born with positive size but gets 
disturbed at some time during the following t - i years. For an existing site, the probability that it does not get 
disturbed in t - i years is (1 - ) t - i. Therefore, we can write  

 
(A.33) 

Consequently, the probability for each year i is  

 

(A.34) 

This final equation can be combined with any of the PDFs of ai,j and bi to determine the PDF of Hi(t), and 
therefore of H(t).  

Case 1: ai,j and bi are Poisson distributed with means A and B.  

Substituting the proper PDFs, and using the same techniques as above, we get  
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Pr[Hi(t) = 0] = exp{- B + B[e-A + (1 - e-A) (1 - (1 - )t - i )]}, (A.35) 
and, for all years combined,  

 

(A.36) 

To approximate a probability that covers a very long time span, take the limit as t approaches infinity. Because S 
> 1, the limit of (1 - )t is zero, and the above expression simplifies to  

 
(A.37) 

which is equivalent to Eq. A.8. To obtain a given contour of I, solve for B to obtain  

 

(A.38) 

Compare this result to Eq. A.11. As in the case for the succession mode, approximations in disturbance mode can 
be developed for large and small A, giving  

 
(A.39) 

for small A, and  

 
(A.40) 

for large A.  

For the first of the above two equations, the slope of B vs. A on a log-log scale is -1; for the second, B is 
independent of A.  
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Case 2: ai,j is Poisson distributed, and bi is negative-binomially distributed.  

The probability for one year is  

Pr[Hi (t) = 0] = pm [1 – (1 - p) K]-m, (A.41) 

where K = e -A + (1 - e -A) (1 - (1 - )t - i). 

 
The probability for all years is  

 

(A.42) 

The latter form is often more convenient to compute when t is large. Substituting in B and u yields the final 
equation  

 

(A.43) 

Case 3: ai,j is negative-binomially distributed, and bi is Poisson distributed.  

The derivation is similar to that of Case 1, with pm substituted for e-A.  

Pr[Hi (t) = 0] = exp{- B + B[pm + (1 - pm) (1 - (1 - )t - i)]}  
I = exp{ SB(pm - 1)} (taking the limit of t approaching infinity) 

= exp{ SB(1 – (1 + uA)-1/u)}.                                             
(A.44) 

Case 4: ai,j and bi are negative-binomially distributed.  

Probability for year i is  

Pr[Hi(t) = 0] = p2
m1 (1 - (1 - p2) K)-m1, (A.45) 

where K = p1
m1 + (1 - p1

m1) (1 - (1 - )t-i.  

Probability for all years,  

 

(A.46) 
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where K = (1 + uAA)-1/u
A + (1 - (1 + uAA)-1/u

A) (1 - (1 - )t-i).  

Specifying t 

In practice, t should be large enough that the effects of initial conditions are negligible. Let g be the probability 
that patches appearing at time zero have disappeared by time t. This probability becomes smaller as t increases, so 
in practice the best procedure is to choose a time span sufficiently large that the impact of initial conditions is 
small (i.e., a value for g that is arbitrarily close to 1). From Eq. A.34 it is possible to derive the expression  

 
(A.47) 

in which the number of patch births in year 0 is assumed to equal B. Solving for t gives  

 

(A.48) 

In our calculations we used g = 0.9999. For example, if S was 100 yr and B was 100 patch births per year, then to 
obtain a g of 0.9999 we used t = 1375 yr.  

Mean and variance effects 

A simulation was used to estimate mean and variance effects. Random variables bi, ai,j, and si,j were numerically 
sampled from a random number generator. The generator was the Marsenne Twister, invented by Matsumoto and 
Nishimura (1998) and published on the Internet at http://www.math.keio.ac.jp/~matumoto/emt.html. Its uniformly 
distributed numbers were transformed to Poisson and negative-binomially distributed numbers using algorithms 
from L'Ecuyer and Côté (1991); coded into C by B.W. Brown, J. Lovato, and K. Russell; and published on the 
internet at http://www.netlib.org/random/. The algorithm used to simulate patch dynamics had the following 
steps:  

1. Specify the number of years t to run the model (see below).  

2. Specify the parameters of the distributions B, S, A, uB, and uA and whether the succession or disturbance 
model is used.  

3. Generate a vector x of patch birth times: sample t random values of bi from the appropriate distribution 
(Poisson, negative binomial). This is the number of patch births in each year. The total number of patches 
is M = S bi. Convert the vector for patch births of each t to a vector for birth times (xm) of each patch (for 
example, three births at t = 4 is converted to the vector {4, 4, 4}).  

4. Generate a vector y of patch disappearance times: sample M random lifetimes sm from the appropriate 
distribution (regular or geometric). Add the vector of lifetimes to the vector x to get a vector of 
disappearance times ym.  

5. Generate a vector z of patch sizes: sample M random sizes zm from the appropriate distribution (Poisson 
or negative binomial).  

6. Simulate patchy population or metapopulation dynamics in the set of patches characterized by the vectors 
x, y, and z.  

Derivation of metapopulation equation 

The parameter of the metapopulation model is c, the probability that an organism in one patch will send out 
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propagules that successfully colonize another patch. Once established, the new population is assumed to 
immediately grow to local carrying capacity and to persist until the patch disappears. To derive the equation, 
consider colonization of patch i by organisms from patch j. If the probability for one organism is c, then the 
probability for all organisms in the patch is 1 - (1 - c)a, in which a is the size of patch j and colonization by each 
organism is assumed to be independent of the others. Combining across all patches gives  

 
(A.49) 

in which Di, t is the probability that patch i will be colonized during year t; independence among patches is 
assumed. The value pj,t is the probability that patch j will be occupied in year t. The metapopulation equation is 
simply  

 (A.50) 

which is inserted into the simulation model described above.  

Numerical methods 

To do the simulations, species abundances were initialized at carrying capacity and projected forward using Eqs. 3 
and 4. The length of the run t was 2s yr to allow the patch dynamics to reach an approximately stationary state; a 
period of 100 yr was then added to quantify effect sizes. Each parameter combination was run 100+ times; effect 
size was estimated as the mean of all runs. In general, enough runs were performed to make the standard error of 
effect size negligible.  

The procedure was computationally intensive. It was impractical to make the estimates over 12 orders of 
magnitude of A and B, as was done for the gap effect. Instead, we examined a single value of A (mean patch size 
= 10). The analysis of the gap effect suggested that this was sufficient, because risk was relatively insensitive to 
changes in A for values greater than A = 2 (see Results). For patch birth rate B, we examined a range of values as 
described in the results that ranged from the critical threshold up to 10,000.  
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